The hydraulic conductivity of the xylem in conifer needles (Picea abies and Pinus mugo).
نویسندگان
چکیده
Main resistances of the plant water transport system are situated in leaves. In contrast to angiosperm leaves, knowledge of conifer needle hydraulics and of the partitioning of resistances within needles is poor. A new technique was developed which enabled flow-meter measurements through needles embedded in paraffin and thus quantification of the specific hydraulic conductivity (K(s)) of the needle xylem. In Picea abies, xylem K(s) of needle and axes as well as in needles of different age were compared. In Pinus mugo, resistance partitioning within needles was estimated by measurements of xylem K(s) and leaf conductance (K(leaf), measured via 'rehydration kinetics'). Mean K(s) in P. abies needles was 3.5×10(-4) m(2) s(-1) MPa(-1) with a decrease in older needles, and over all similar to K(s) of corresponding axes xylem. In needles of P. mugo, K(s) was 0.9×10(-4) m(2) s(-1) MPa(-1), and 24% of total needle resistance was situated in the xylem. The results indicate species-specific differences in the hydraulic efficiency of conifer needle xylem. The vascular section of the water transport system is a minor but relevant resistance in needles.
منابع مشابه
Static and dynamic bending has minor effects on xylem hydraulics of conifer branches (Picea abies, Pinus sylvestris)
The xylem hydraulic efficiency and safety is usually measured on mechanically unstressed samples, although trees may be exposed to combined hydraulic and mechanical stress in the field. We analysed changes in hydraulic conductivity and vulnerability to drought-induced embolism during static bending of Picea abies and Pinus sylvestris branches as well as the effect of dynamic bending on the vuln...
متن کاملXylem Sap Surface Tension May Be Crucial for Hydraulic Safety.
The surface tension (γ) of xylem sap plays a key role in stabilizing air-water interfaces at the pits between water- and gas-filled conduits to avoid air seeding at low water potentials. We studied seasonal changes in xylem sap γ in Picea abies and Pinus mugo growing at the alpine timberline. We analyzed their vulnerability to drought-induced embolism using solutions of different γ and estimate...
متن کاملFrost drought in conifers at the alpine timberline: xylem dysfunction and adaptations.
Drought stress can cause xylem embolism in trees when the water potential (psi) in the xylem falls below specific vulnerability thresholds. At the alpine timberline, frost drought is known to cause excessive winter embolism unless xylem vulnerability or transpiration is sufficiently reduced to avoid critical psi. We compared annual courses of psi and embolism in Picea abies, Pinus cembra, Pinus...
متن کاملHeterologous Array Analysis in Pinaceae: Hybridization of Pinus Taeda cDNA Arrays With cDNA From Needles and Embryogenic Cultures of P. Taeda, P. Sylvestris or Picea Abies
Hybridization of labelled cDNA from various cell types with high-density arrays of expressed sequence tags is a powerful technique for investigating gene expression. Few conifer cDNA libraries have been sequenced. Because of the high level of sequence conservation between Pinus and Picea we have investigated the use of arrays from one genus for studies of gene expression in the other. The parti...
متن کاملHydraulic efficiency and safety of vascular and non-vascular components in Pinus pinaster leaves.
Leaves, the distal section of the soil-plant-atmosphere continuum, exhibit the lowest water potentials in a plant. In contrast to angiosperm leaves, knowledge of the hydraulic architecture of conifer needles is scant. We investigated the hydraulic efficiency and safety of Pinus pinaster needles, comparing different techniques. The xylem hydraulic conductivity (k(s)) and embolism vulnerability (...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of experimental botany
دوره 62 12 شماره
صفحات -
تاریخ انتشار 2011